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Abstract

Effects of extra strain and dilatation rates on the turbulence structure in nozzles and diffusers with fully developed supersonic pipe
flow as inflow condition are investigated by means of LES using high-order numerical schemes. Results from a DNS of pipe and nozzle
flow validating the LES are also shown. It is found that weak pressure gradients already strongly inhibit or enhance the Reynolds stresses
via corresponding changes of production and pressure-strain terms. The results constitute a database for the improvement of second-

order turbulence models for compressible flow.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Compressibility effects in simple turbulent shear flows
along isothermal walls, like fully developed channel or pipe
flow, manifest themselves in terms of mean density and
temperature variations in the near-wall layer and thereby
increase the anisotropy of the Reynolds stress tensor.
While the peak value of the streamwise Reynolds stress
grows with increasing Mach number, the peak values of
the other stresses decrease as a consequence of reduced
pressure-strain  correlations. Since wave-propagation
effects are unimportant up to supersonic Mach numbers,
solutions of the Poisson equation for the pressure fluctua-
tions by means of a Green function have proven for
fully-developed supersonic channel flow (Foysi et al.,
2004) that the decrease in mean density from the wall to
the channel core is responsible for the decrease of all pres-
sure-strain correlations compared to incompressible flow.
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Analogous decrease of pressure-strain correlations with
increasing Mach number has been observed in pipe flows
(Ghosh et al., 2006). Hence, similar mechanisms control
the changes in anisotropy of the Reynolds stress transport.
They may be summarized as follows. The production of the
streamwise Reynolds stress declines with increasing Mach
number, but scales with the wall shear stress and the local
viscosity along the semi-local wall-normal coordinate. The
corresponding pressure-strain correlation does not follow
this scaling law, and decreases faster with increasing Mach
number which explains the increase in streamwise Rey-
nolds stress. The wall-normal and azimuthal Reynolds
stresses have no production terms in their balance equa-
tions and decay with increasing Mach number since the
pressure-strain correlations decay.

It is to be expected that flows subjected to acceleration
and deceleration exhibit even more complex Reynolds
stress transport mechanisms. The response of flows to
expansion or compression leads to transport phenomena
which cannot be explained in terms of mean property vari-
ations alone. Bradshaw (1974, 1977) has used the appropri-
ate term ‘complex flows’ to denote flows in which
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significant pressure gradients and strain rates exist. He has
discussed the increase in Reynolds stresses by bulk com-
pression and their decrease by bulk expansion in super-
sonic turbulent boundary layers and has highlighted the
need to improve engineering calculation methods. His
attempt to account for mean dilatation effects in his empir-
ical Reynolds shear stress equation provides some, but not
sufficient improvement in predicting complex compressible
flows. In their review article on the physics of supersonic
turbulent boundary layers, Spina et al. (1994) stress the
need for systematic experimental and DNS data for such
complex, compressible flows.

Effects of rapid compression on isotropic turbulence up
to an initial turbulent Mach number of M, = 0.29 were
studied by Cambon et al. (1993). Using DNS they find tur-
bulence amplification and show that, although there is a
rise in pressure-dilatation correlation at higher M, and at
higher compression rates, this is accompanied by an
increased turbulent kinetic energy (TKE) production rate
through the redistributive pressure-strain correlations.
The increase in pressure-dilatation correlation is relatively
small compared to that of TKE production. Mahesh
et al. (1994) study rapid compression of a shear flow by
means of DNS and show that the degree of amplification
of TKE and streamwise intensities is higher than in isotro-
pic turbulence. Again, the importance of pressure—strain
correlations is confirmed by this study. Effects of rapid
expansion on a supersonic turbulent boundary layer have
been studied experimentally by Dussauge and Gaviglio
(1987). They found that the rapid parts of the pressure—
strain correlations are modified and the Reynolds stress
decay in the expansion is mainly caused by bulk dilatation
production terms (i.e. part of kinetic production) and to a
lesser extent by mean pressure gradient production terms
(enthalpic production).

While studying the literature, we did not come across
systematic numerical investigations of the effects of weak,
distributed pressure gradients on compressible, wall-
bounded turbulence. Hence, it is our aim to contribute
new findings about effects of such weak, distributed dilata-
tion on the turbulence structure in supersonic nozzles and
diffusers using well-established and accurate numerical
methods. Data presented here from these canonical flow
computations could be readily used for further improve-
ment of Reynolds stress closures.

The flow configuration chosen is fully-developed super-
sonic pipe flow subjected to gradual acceleration/decelera-
tion in a nozzle/diffuser with circular cross-section and
isothermal wall. The supersonic pipe flow is driven by a
homogeneous body force facilitating the use of streamwise
periodicity. Data from this simulation is specified as inflow
conditions in real-time to the nozzle/diffuser simulations.
Results from large-eddy simulations of these flows using
an explicit filtering version of the approximate deconvolu-
tion method (ADM) of Stolz et al. (2001) are reported here.
A DNS has also been performed to validate the LES data
for pipe and nozzle flow.

2. Governing equations and coordinate systems

The governing Navier—Stokes equations are written in a
pressure—velocity—entropy form (Sesterhenn, 2001) in gen-
eralized curvilinear coordinates:
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The coordinates ¢’ are related to the cartesian coordi-
nates x; by = = 2—:[ O% u' = u,u> = v,u* = w are the veloci-
ties along coordinates &' = &, & =5, & = { and are related
to the cartesian velocity components u; through u' = éfiui.
g™ is defined as g = fﬁf"}’, where éjfi stands for g—fl The
above equations for the evolution of p,u,v,w and s are
solved along with an ideal gas equation of state,
p = pRT, with constant C,, C, and constant Prandtl num-
ber (Pr). The dynamic viscosity is assumed to vary with
temperature according to Sutherland’s law: pu oc 7°7.

X* Y%, Z* can be interpreted as acoustic waves propa-
gating with velocities u + \/E ¢, vk \/?c and w+
@c along the curvilinear coordinates &', &% &, X°,
Y*,Z° are entropy waves with velocities u,v, and w and
Xwew oy Z9tY are vorticity waves with corresponding
velocities u, v, w, respectively:
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The viscous stress (neglecting bulk viscosity effects), the
strain rate tensor and the dissipation rate are defined as

1 1 /Ou; Ou;
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These equations are solved in an orthogonal (cylindri-
cal) coordinate system for the pipe flow simulations and
in a non-orthogonal system for the nozzle/diffuser simula-
tions. The singularity at the axis is avoided by placing no
gridpoint on the axis by suitable staggering following Moh-
seni and Colonius (2000).

Cylindrical coordinates for a domain of length L, in
axial direction and radius R are defined as follows and
include the wall-normal tanh stretching:

tanh x( Reos? tanh k{
= TC =
tanh x T = anhx

x1 =¢L,, x; Rsin2ny,

where &, 57, { vary uniformly from 0 to 1 and « is the stretch-
ing factor (x is taken to be 1.1 in all computations in order
to avoid high aspect-ratio of the grid near the centerline).

The non-orthogonal coordinates for the nozzle/diffuser
simulations with a domain of length L, in axial direction
and an axially varying radius f(¢) are defined as follows:

. _ tanh x{

x1=CL,, x= anh S (&) cos 2my,
tanh x( .

Xy = S (&) sin2mn.

f(&) is determined in our flow cases using isentropic
streamtube equations and specifying a pressure distribution
in such a way that the flow goes through an extended re-
gion of constant pressure gradient.

3. Numerical method

Sixth-order compact central schemes (Lele, 1992) are
used for spatial discretization in the LES. In the DNS,
fifth-order compact upwind schemes (Adams and Shariff,
1996) have been used for the convection terms and sixth-
order compact central schemes for the molecular transport
terms. The flow field is advanced in time in both cases using
a third-order low-storage Runge-Kutta scheme (William-
son, 1980).

3.1. LES approach

An explicit filtering variant (Mathew et al., 2003) of the
Approximate Deconvolution Method (Stolz et al., 2001) is
used for modelling the subgrid scale terms which is briefly
explained here using a 1d nonlinear transport equation

Ou N of (u)

ot Ox

The low-pass filtered transport equation can be written
as

o o _of@ . o
54_ ox  Ox -G ox @)
where u = Gxu= [G(x —x)u(x)dx’ and G is a spatial
low-pass filter. Approximate deconvolution u* = Q, *u
uses the approximate inverse of G, Oy ~ G~' computed
using the Van Cittert series, Oy = > (I — G)", (Stolz
et al., 2001) truncated at N = 6 (/ is the identity operator).
Eq. (2) can now be written
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For a useful LES, the low-wavenumber content of the

deconvolved field u* should be as close as possible to that
ofu,ie. Gxu* ~G+u=u.

The assumption v = u* gives the simplest LES equation

ou of (w*)
S+G 0 (4)

=0.

A more sophisticated LES equation can be obtained by
modelling the square bracket on the RHS of (3) (Mathew
et al., 2006). This LES approach is not used here due to
its extensive numerical costs. The procedure used to solve
(4) involves the following three steps:

u = Oy ",

u*(rﬂ»l)

deconvolution :

integration : — ",

filtering :  #"*) = G "D,

In a simulation, step 1 follows step 3, so that both steps can
be combined:

u'™ — Oy x Gxur™.

Additional regularization by artificial dissipation is
found to be necessary in order to mimic the effect of dissi-
pative scales on the resolved scales since the deconvolved
variable, u*, can contain wavenumbers only up to the
Nyquist limit of the coarse LES grid. In the ADM formu-
lation of Adams and Leonard (1999) and subsequently in
that of Stolz et al. (2001), additional regularization is
achieved by adding a relaxation term of the form
7(I — Oy * G) x u to the filtered equation. A model that is
nearly equivalent to a relaxation term is obtained by an
additional filtering step with the filter O, * G (Mathew
et al., 2003). Thus the procedure of deconvolution and reg-
ularization is combined here into a single-step filtering with
the filter (O, * G) at each time step.

The filter G used for the periodic directions is a one-
parameter Padé filter with o = 0.2,

-~ 1\ 1+cosw
G(w) = ) —
(@) <“+2) 1+ 2o0cosw
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Transfer functions

Fig. 1. Transfer functions of filters and their approximate inverse for a
periodic case. o= 0.2 and N=6: (—) G, (———) On, (....) ON* G, (———)
(On* G

The transfer functions of G, O, * G, (Qy * G)” are shown
in Fig. 1.

Ghosh et al. (2006) performed LES of supersonic pipe
flow with an isothermal wall using this single-step explicit
filtering technique and found very satisfactory agreement
with their DNS data concerning correlations that are dom-
inated by large scales.

3.2. Boundary conditions

In the present work, fully-developed supersonic turbu-
lent pipe flow serves as inflow condition for nozzle and dif-
fuser flow. The streamwise periodic pipe flow and the
nozzle/diffuser flow simulations are coupled using standard
MPI routines (Schlueter et al., 2002). Inflow conditions are
specified in the form of characteristics in a similar manner
as Poinsot and Lele (1992). In the supersonic region of the
inflow plane all the incoming characteristics (X, X,
X', X" X*) are specified. In the subsonic region the outgo-
ing acoustic wave X~ is computed from the nozzle flow
simulation and this provides acoustic transparency to the
inflow. For the viscous terms at the inflow, the streamwise
derivatives are computed on a mixed stencil involving
points from the pipe and the nozzle/diffuser simulations.

Partially non-reflecting outflow conditions (Poinsot and
Lele, 1992) are used in the subsonic region of the outflow
plane. The pressure at the outflow is specified by adding
a forcing term of the form X~ = K(p — p,;) to the axial
momentum equation. This form of forcing brings informa-
tion into the computational domain about the ambient
pressure, p;,.. Poinsot and Lele (1992) provide a way to
evaluate the constant K such that the imposed condition
has only a weak influence on the flow

K =0o(l — M*)c/L,

where M is the maximum Mach number in the subsonic
flow, L is a characteristic domain size, c is a speed of sound
and o is a constant. In our flow cases, M and ¢ were taken
as average quantities, L as the axial domain size and
o = 0.25.

Extra conditions for the viscous terms are specified by
setting to zero the axial derivatives of the transverse shear
stresses and the heat flux through the outflow plane

o _ oy O _ o 0,
6x1— 6x1_’ 6)61_7

where x; is a coordinate normal to the outflow plane. No
sponge layer has been used either in the LES or in the
DNS.

At the walls impermeability and no-slip conditions hold
and the walls are kept at the same constant temperature in
both the pipe and the nozzle/diffuser simulations.

3.3. Computational parameters

We have chosen fully-developed turbulent flow through
pipes of constant circular cross-section with isothermal
wall as well-defined inflow conditions for the nozzle/dif-
fuser simulations. The working fluid is air with a Prandtl
number of 0.7, a ratio of specific heats, y = 1.4. The flow
is driven by a constant body force. The Mach and the fric-
tion Reynolds numbers of the incoming pipe flow for the
nozzle computation are 1.5 and 245, while those for the dif-
fuser computation are 1.8 and 280. While the Mach num-
ber is based on the speed of sound at wall temperature
and bulk velocity, the friction Reynolds number Re, is
defined using the friction velocity u, = /1w/p,,, the pipe
radius R and the kinematic viscosity at the wall, vy, (Ty).
The domain length of each configuration (pipe or nozzle/
diffuser) is L = 10R. The streamwise variation of the flow
cross-section is calculated using streamtube equations for
a given streamwise pressure distribution. This is done to
ensure that the turbulence is subjected to an extended
region of nearly constant weak pressure gradient. The Cla-
user pressure gradient parameter, § = f— %, has an average
value of —1.6 in the nozzle and 1.6 in the diffuser, respec-
tively. The ratios of nozzle- and diffuser radii to pipe radius
at the ends of the computational domains are 1.58 (nozzle)
and 0.93 (diffuser). The number of grid points used to dis-
cretize the pipe and nozzle domains are 64 x 64 x 50 in the
LES and 256 x 128 x 91 in the DNS in streamwise, circum-
ferential and radial directions. For the LES of diffuser flow,
a grid of 64 x 64 x 50 points is chosen as well.

4. Results

Results are presented in three sections. The first section
is dedicated to fully-developed supersonic pipe flow that
serves as inflow condition for nozzle and diffuser flow. In
the second section, we discuss mean flow features in the
nozzle, the evolution of Reynolds stresses and Reynolds
stress budgets with a focus on pressure—strain correlations
and the various contributions to production. Most of the
results are based on LES data. DNS data are occasionally
used to validate the results. The third section concentrates
on analogous effects in the diffuser. Here, only LES data
are available.
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4.1. Fully-developed supersonic pipe flow

We focus here on the inflow conditions for nozzle flow
alone, as an example, since they are similar to those of dif-
fuser flow. The computational domain for the pipe is
10R x 2nR x R where R is the pipe radius. The pipe wall
is kept isothermal. For the DNS 256 x 128 x 91 points
are used in the streamwise, azimuthal and radial directions
while the LES was carried out with 64 x 64 x 50 points.
Table 1 summarizes the computational parameters.

In order to check how the LES performs, we plot energy
spectra in the peak TKE production zone (Fig. 2) of the
three velocity fluctuations versus streamwise wavenumbers
normalized using local friction velocity uf = /t,/p and
local kinematic viscosity v. Careful observation reveals a
slight overshoot of the LES spectra over the DNS spectra
for the axial (u,) and azimuthal (u,) large-scale components
and a slight undershoot over a broad range in the radial
component (u,).

In what follows we present comparisons between DNS
and LES data for some mean flow quantities and the nor-
mal and shear Reynolds stress components. Fig. 3 shows
the mean velocity profile in Van Driest scaling

T p B
IJJr : / le/lx+
P 0 Pw

versus the wall coordinate y© = yu_/v,,. The fact that the
profile deviates remarkably from the standard log-law
ut =2.5Iny" + 5.5 is due to the relatively low Reynolds
number Re, = 245. An increase in Re, moves the profile
closer to the log-law (not shown here).

Table 1

Flow and computation parameters

Case Ax* rAgt. AL A M Re. Ty
DNSM1.5 9.5 12.0 1.3 3.73 1.5 245 220
LESM1.5 38 21.2 2.5 6.79 1.5 244 220

10

0.1

0.01
0.001
1e-04
1e-05

1e-06 :
0.001 0.01 0.1 1
k*

x

Fig. 2. Streamwise energy spectra, averaged in the azimuthal direction for
the three velocity components in the buffer layer (y* = 20). Solid line:
DNS, dashed line: LES.

25

1 10 100
y*+
Fig. 3. Van Driest transformed velocity. Solid line: DNS; dashed line:
LES. Dotted line: u™ = 2.5Iny* +5.5.

As seen in Fig. 4, the streamwise Reynolds stress
puu” [ty is slightly overpredicted by the LES in the buffer
layer where the production of TKE peaks. In that zone, the
radial Reynolds stress reveals an underprediction in the
LES. Both effects appear to be consistent with those found
in the corresponding energy spectra and they compensate
each other in the Reynolds shear stress (Fig. 5). We con-
clude this subsection with results for the mean temperature,
mean density and mean pressure in Figs. 6 and 7. All the
LES results show marginal differences from the DNS

9
8
7
. 6
<5
S o4
g 3
2
1
o T
0 02 04 06 08 1

y/R

Fig. 4. Normal Reynolds stresses, normalized with wall shear stress. Solid
line: DNS; dashed line: LES.

0.8

0.6

0.4

o

pusu, /Ty, Totalstress

0.2

0 02 04 06 08 1
y/R

Fig. 5. Reynolds shear stress and total stress, normalized with wall shear
stress. Solid line: DNS; dashed line: LES.
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Fig. 6. Mean temperature and density profiles. Solid lines: DNS; dashed
lines: LES.
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Fig. 7. Mean pressure profiles. Solid lines: DNS; dashed lines: LES.

results. An interesting physical aspect should be noted in
Fig. 7. The radial pressure variations are so low that they
can be neglected with respect to the strong mean tempera-
ture variations. As a result, the mean ideal gas law predicts
a close radial coupling between mean temperature and den-
sity fields.

4.2. Nozzle flow

For an improved understanding of compressibility and
acceleration effects it is necessary to discuss the behaviour
of mean primitive flow variables first. Fig. 8 contains axial
profiles of mean centerline Mach number and pressure
(normalized with their values at the inflow). Fig. 8 also pre-
sents the axial variation of the nozzle cross-section A, nor-
malized with its upstream value, 4,. 4 starts increasing at
x/L =0.16, after a short section of constant diameter.
When A has reached its maximum value of 2.5, the center-
line Mach number has increased from 1.52 to 2.5 which
represents a factor of 1.64 increase. Fig. 9 shows profiles
of mean temperature and density along the nozzle center-
line. In both figures results obtained from isentropic
streamtube equations have been plotted for comparison.
Since viscous effects are of little importance in the core
region of the nozzle, the flow behaves close to the acceler-

Fig. 8. Streamwise variation of cross-sectional area (A4), mean centerline
Mach number (M.) and pressure (p.) in the nozzle. (—) LES, (——-)
Isentropic streamtube. Subscript ‘0’ denotes value at inflow x/L = 0.

0 0.2 0.4 0.6 0.8 1
z/L

Fig. 9. Streamwise variation of mean centerline density (p.), wall density
(pw) and centerline temperature (7.) in the nozzle. (—) LES, (——-)
Isentropic streamtube. Subscript ‘0’ denotes value at inflow x/L = 0.

ated isentropic flow with decreasing pressure, density and
temperature. Of course, we cannot expect full agreement
between the real flow and the streamtube results, because
streamline curvature, which sets in at x/L ~ 0.1 affects
the near-wall turbulence activity and, in turn, also the flow
and the thermodynamic variables on the axis. The wall
shear stress first shows an increase and a subsequent slow
decrease (Fig. 10). It should be noted that the abrupt jump
in the wall shear stress near the outflow is a consequence of
the outflow boundary condition which, however, remains
local. In what follows, t,, is used for normalization at posi-
tions x/L = 0.0, 0.45, and 0.8. At these downstream posi-
tions, 1, is obviously larger than in the pipe, as a result
of acceleration.

Fig. 11 presents the streamwise evolution of radial mean
temperature and density profiles and a comparison of DNS
and LES data, which proves good agreement. In fully
developed pipe flow (x/L = 0.0) mean density and temper-
ature are directly linked in radial direction, since the radial
pressure gradient is negligibly small. The heat generated by
dissipation in the wall layer strongly increases the mean
temperature and leads to a heat flux out of the pipe. The
mean density in turn drops from its high wall value to a
low core value and thus reduces the pressure—strain corre-
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0.95
0.9
0.85

0 0.2 0.4 0.6 0.8 1
x/L

Fig. 10. Wall shear stress along the nozzle (LES). Subscript ‘o’ denotes
value at inflow x/L = 0.

T/T,,

P/ pu

0 0.2 0.4 0.6 0.8 1
y/R(z) = 1 —r/R(x)

Fig. 11. Mean density and temperature profiles in the nozzle at stations
x/L=00(... ... ), 0.45 (—), 0.8 (—-—-—). Lines: LES, symbols: DNS.

lations. This effect, explained for turbulent channel flow by
Foysi et al. (2004), also holds for pipe flow, (Ghosh et al.,
2006). The described direct coupling between temperature
and density in radial direction persists in the present accel-
erated flow (Fig. 11, x/L > 0.0). While in the nozzle core
adiabatic cooling due to acceleration compensates dissipa-
tive heating and hence leads to a downstream decreasing
ratio T /T, this effect is less pronounced in the near-wall
region. The fact that p/p,, increases with x/L is counterin-
tuitive. It is due to the thermal boundary condition (iso-
thermal wall) and to the fact that the wall density
decreases proportional to the wall pressure and obviously

25

20

1 10 100
y*
Fig. 12. Van Driest transformed mean velocity profiles in the nozzle in

wall coordinates. x/L stations as in Fig. 11. Lines: LES, symbols: DNS.
Straight line: 2.5Iny* + 5.5.

faster than the mean density on the centerline (Fig. 9).
Due to flow acceleration in the nozzle the mean sonic line
moves closer to the wall, so that the layer in which subsonic
flow persists gets thinner in downstream direction. The
strong increase in wall shear stress due to acceleration
and the weaker increase in mean density ratio combine in
such a way that the Van Driest transformed velocity pro-
files develop as shown in Fig. 12. Similar effects in the
velocity profiles were observed by Bae et al. (2006) in
DNS of strongly heated low-speed air flow in pipes of con-
stant diameter. There the flow is accelerated because the
bulk density decreases nearly linearly within a certain sec-
tion of constant wall-heating. In the case of strong wall-
heating (run 445 of Bae et al., 2006), the Van Driest trans-
formed velocity profiles fall below the universal shape, like
in the present nozzle flow. However, it should be noted that
the streamwise temperature profiles are different in the two
flow cases.

Flow acceleration dramatically affects the turbulence
structure. An instantancous plot of axial velocity fluctua-
tions (Fig. 13) shows that the turbulence activity near the
wall is gradually reduced as we proceed downstream. How-
ever, we note that the flow near the outflow is not relami-
narized. The streamwise Reynolds stress, normalized with
the local wall shear stress, decreases by nearly an order
of magnitude, as seen in Fig. 14. Due to non-equilibrium
of the flow, 7, is no longer a suitable scaling parameter

Fig. 13. Axial velocity fluctuations, normalized with \/7/p|,. in a (x,r)-plane of the nozzle (DNS).
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Fig. 14. Streamwise Reynolds stress in the nozzle normalized with the
local wall shear stress. Lines: LES, symbols: DNS. x/L stations as in
Fig. 11.

for collapsing Reynolds stress profiles in the core region, as
it is for fully-developed pipe flow (Ghosh et al., 2006).
Fig. 15 presents the downstream evolution of the Reynolds
shear stress and the total shear stress. Here again, a dra-
matic decrease of all terms in the flow direction is observed.
Finally, a strong decay of the solenoidal TKE dissipation
rate and a decrease of the peak value of the turbulent Mach
number from 0.25 to 0.17 are observed in this flow (not
shown here for brevity).

In order to understand the reasons for these changes in
the nozzle, we examine production terms and pressure—
strain correlations in the Reynolds stress budgets of
pu"u” /2, puu”, pu’u” /2 and express them in a cylindrical
(x, ¢, r)-coordinate system which differs only weakly from
the computational coordinate system. In such a system
the radial budget contains production terms as well. We
distinguish between ‘kinetic’ and ‘enthalpic’ production
and split, following Gaviglio et al. (1977), the first into con-
tributions due to shear, extra rate of strain and mean dila-
tation. It should be noted that production by mean
dilatation is the only explicit compressibility effect, since
production by shear and extra rate of strain appear also
in incompressible pipe flow with varying cross-section.
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Fig. 15. Reynolds shear stress and total shear stress in the nozzle
normalized with the local wall shear stress. Lines: LES, symbols: DNS.
x/L stations as in Fig. 11.
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Fig. 16. Contributions to production of the axial Reynolds stress in the
nozzle at stations x/L = 0.0 (dotted line) and 0.45 (solid line). sh: mean
shear, dil: mean dilatation, es: extra rate of strain. Lines: LES, symbols:
DNS. All terms are normalized by 72 /.
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Fig. 17. Contributions to production of the Reynolds shear stress in the
nozzle at stations x/L = 0.0 (dotted line), 0.45 (solid line). sh1: mean shear
(shearl), dil: mean dilatation. Lines: LES, symbols: DNS. All terms are
normalized by 72 /L.
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Figs. 16 and 17 show the contributions to P,, and P, in
the nozzle at x/L = 0.45 and in fully-developed pipe flow
(which corresponds to the position x/L = 0), normalized
with local values of 72 /i. Among the two production by
shear terms in P,,, the first is dominant and the second is
negligible in this specific nozzle. Clearly, compressibility
in the form of mean dilatation counteracts the shear pro-

duction of the pu’u”, pu’u/ components. Production by
acceleration (extra rate of strain) does the same, at least
in the streamwise component. The production rates by
shear are themselves reduced by the stabilization of the
two stresses pu’u” and pu’u’. Again, good agreement is
found between the DNS and LES results. In the pu/u”-bud-
get enthalpic production appears on the RHS in the form
—u_;’g—‘f and has only a very small positive value (not shown).

The pressure—strain correlations can be split into devia-
toric and dilatational parts

o AN 1—
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d’ represents dilatational fluctuations. Profiles of I, I1,,,
normalized with local values of 72 /ji, are presented in Figs.
18 and 19 for stations x/L = 0.0,0.45,0.8. The dramatic
reduction of the deviatoric parts in the nozzle is obvious.
The contribution of the pressure-dilatation correlation is
very small. Besides the weak production by shear, the
I1,,-term is the only source term in the radial stress budget.
The streamwise decay of pu’u” is therefore mainly due to
the reduction of the pressure—strain correlation which can
be traced back to the reduction of pressure and velocity-
gradient fluctuations. It remains to be shown which role
mean dilatation, extra strain rate and mean density varia-
tion play in damping pressure fluctuations.
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y/R(z) = 1 —r/R(z)

Fig. 18. Pressure-strain correlation II,, in the nozzle. Lines: LES at
x/L=00(... ... ), 045 (—), 0.8 (——-). (©), (x): II, (DNS) at
x/L = 0,0.45, respectively. (®), p'd'/3 (LES) at x/L = 0.45. Terms are
normalized by t2 /L.
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Fig. 19. Pressure-strain correlation II,. in the nozzle. Lines: LES at
x/L=00 (... ... ), 045 (—), 0.8 (——-). (©), (x): I, (DNS) at
x/L = 0,0.45, respectively. Terms are normalized by <2 /[i.

4.3. Diffuser flow

Supersonic turbulent diffuser flow is not just the oppo-
site of nozzle flow. Its behaviour strongly depends on the
rate of deceleration, and the Mach and Reynolds numbers
at the inlet. We recall that the inlet Mach and friction Rey-
nolds numbers are 1.8 and 280. The chosen higher incom-
ing Mach and Reynolds numbers (they are 1.5 and 250 for
nozzle flow) avoid noticeable transonic regions at the end
of the diffuser. Moreover, the axial profiles of centerline
Mach number and pressure (Fig. 20), as well as centerline
density and temperature (Fig. 21) do not follow predictions
of the isentropic streamtube equations. Wall and centerline
pressure, density and temperature distributions grow much
faster due to trains of compression and expansion waves
reminding us of shock trains observed in experiments at
stronger flow deceleration (Matsuo et al., 1999). The wall
shear stress in this flow first decreases and subsequently
increases, see Fig. 22. At positions x/L = 0.2, 0.45 where
flow conditions are investigated below, it is remarkably
lower than at the inflow plane (x/L = 0.0) which corre-
sponds to fully-developed pipe flow.

Fig. 20. Axial variation of cross-sectional area, mean centerline Mach
number and pressure in the diffuser. (—) LES, (——-) Isentropic stream-
tube. Subscript ‘0’ denotes value at inflow x/L = 0.
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Fig. 21. Axial variation of mean centerline density and temperature in the
diffuser. (—-) LES, (——-) Isentropic streamtube. Subscript ‘0’ denotes
value at inflow x/L = 0.
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Fig. 22. Wall shear stress along the diffuser. Subscript ‘0’ denotes value at
inflow x/L = 0.

Fig. 23 reveals that the mean temperature grows in the
diffuser in flow direction due to compression and increased
dissipation rate (not shown). As a consequence the mean
density ratio decays in flow direction. The Van Driest
transformed mean axial velocity now reaches levels higher
than in fully developed pipe flow, see Fig. 24. This is pre-
dominantly a result of the streamwise reduction of wall
shear stress. Increased turbulence activity in the near-wall
region of the diffuser is observed in the plot of instanta-
neous axial velocity fluctuations (Fig. 25) The Reynolds
stresses provide the proof of the enhanced turbulence activ-
ity. As an example we show the streamwise Reynolds stress
in Fig. 26 and the total as well as Reynolds shear stress in
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Fig. 23. Mean density and temperature profiles in the diffuser at stations
x/L=00(... ... ), 0.2 (—), 0.45 (——-— ).
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Fig. 24. Van Driest transformed mean velocity profiles in the diffuser in
wall coordinates. x/L stations as in Fig. 23. Straight line: 2.5Iny* + 5.5.

Fig. 27. Although the flow deceleration is fairly weak (the
centerline Mach number decreases from 1.8 to 1.45) the
Reynolds stresses increase by roughly a factor of 2. As a
typical sign of decelerated wall-bounded flow, the maxi-
mum shear stress increases in magnitude and moves away
from the wall. We also note a growth in the solenoidal dis-
sipation rate and the turbulent Mach number and are
aware that an LES can predict trends of turbulent dissipa-
tion rates reliably, but not their absolute values. The
enhanced turbulence activity is reflected in the production
of Reynolds stresses by mean shear, extra rate of strain
and mean dilatation. Fig. 28 shows that, in contrast to
the nozzle flow, mean dilatation and extra rates of strain
now act as sources producing streamwise Reynolds stress.
The first production by shear term (Fig. 29) in the shear

e e e e e R e R I I

12

Fig. 25. Axial velocity fluctuations, normalized with \/7,/p,|,. in a (x,r)-plane of the diffuser (LES).
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Fig. 26. Streamwise Reynolds stress in the diffuser normalized with the
local wall shear stress. x/L stations as in Fig. 23.
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Fig. 27. Reynolds shear stress and total shear stress in the diffuser
normalized with the local wall shear stress. x/L stations as in Fig. 23.

0.7
0.6
0.5 sh
0.4
0.3
0.2
0.1

-0.1
0 0.2 0.4 0.6 0.8 1

y/R(z) = 1—r/R(x)
Fig. 28. Contributions to production of the axial Reynolds stress in the
diffuser at stations x/L = 0.0 (dotted line) and 0.2 (solid line). sh: mean

shear, dil: mean dilatation, es: extra rate of strain. All terms are
normalized by 72 /fi.

stress equation increases in a similar fashion as it decreases
in the supersonic nozzle. The second term of this kind is
now non-zero, but counteracts the first. Mean dilatation
has a weak source effect on turbulence production. Finally,
the pressure—strain correlations grow in decelerated flow
and provide increased contributions to the radial and cir-
cumferential Reynolds stress components. The peak of
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Fig. 29. Contributions to production of the Reynolds shear stress in the
diffuser at stations x/L = 0.0 (dotted line), 0.2 (solid line). sh1: mean shear
(shearl), sh2: mean shear (shear?), dil: mean dilatation. All terms are
normalized by 72 /L.

0.02

©000000.0.0.6-0.0.0.

-0.02
-0.04

= -0.06
-0.08
0.1
-0.12

rr

0 0.2 0.4 0.6 0.8 1
y/R(z) = 1 —r/R(z)

Fig. 30. Pressure-strain correlation I1,, in the diffuser. x/L stations as in
Fig. 23. (®), p/d'/3 at x/L = 0.2. Terms are normalized by 72 /p.

0.05
0.04
0.03
0.02
0.01

Tr

-0.01 pJ
0.02 |1/
-0.03

0 0.2 0.4 0.6 0.8 1
y/R(z) = 1 —r/R(x)

Fig. 31. Pressure-strain correlation II,, in the diffuser. x/L stations as in
Fig. 23. Terms are normalized by t2 /.

the axial pressure-strain correlation in Fig. 30 grows by a
factor of at least five in the domain considered. The pres-
sure-dilatation correlation taken at x/L = 0.2 is still very
small compared to I1,.. The axial growth of the radial pres-
sure—strain correlation (Fig. 31), explains the growth of the
radial Reynolds stress in the diffuser.



590 S. Ghosh et al. | Int. J. Heat and Fluid Flow 29 (2008) 579-590

5. Conclusions

Supersonic turbulent pipe flow subjected to gradual
acceleration/deceleration in a nozzle/diffuser has been
investigated by means of LES in order to assess the effects
of mean dilatation and extra rate of strain on the turbu-
lence structure. Occasionally, DNS has been used to vali-
date the LES results. Although the rates of acceleration/
deceleration and mean dilatation are small, the decrease/
increase in Reynolds stress components is large. At the
same time dilatational fluctuations are only weakly
affected, so that explicit compressibility terms (like pres-
sure-dilatation and compressible dissipation rate) remain
small. While extra rates of strain and mean dilatation act
as small source/sink terms in the Reynolds stress transport
equations, the strong modification of production due to
shear caused by large changes in pressure-strain correla-
tions is the major cause of decay/amplification of Reynolds
stresses in these flows. It remains to be shown in which way
extra-rates of strain, mean dilatation and mean density
variations affect pressure and velocity-gradient fluctuations
and thus control the variation of pressure-strain correla-
tions. This is the aim of future work.
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